Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Biophotonics ; 14(10): e202100135, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1469460

RESUMEN

The study presented a Monte Carlo simulation of light transport in eight commonly used filtered facepiece respirators (FFRs) to assess the efficacy of UV at 254 nm for the inactivation of SARS-CoV-2. The results showed different fluence rates across the thickness of the eight different FFRs, implying that some FFR models may be more treatable than others, with the following order being (from most to least treatable): models 1512, 9105s, 1805, 9210, 1870+, 8210, 8110s and 1860, for single side illumination. The model predictions did not coincide well with some previously reported experimental data on virus inactivation when applied to FFR surfaces. The simulations predicted that FFRs should experience higher log reductions (>>6-log) than those observed experimentally (often limited to ~5-log). Possible explanations are virus shielding by aggregation or soiling, and a lack of the Monte Carlo simulations considering near-field scattering effects that can create small, localized regions of low UV photon probability on the surface of the fiber material. If the latter is the main cause in limiting practical UV viral decontamination, improvement might be achieved by exposing the FFR to UV isotropically from all directions, such as by varying the UV source to the FFR surface angle during treatment.


Asunto(s)
COVID-19 , Respiradores N95 , Humanos , SARS-CoV-2
2.
J Biophotonics ; 13(12): e202000232, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-745430

RESUMEN

This study presents numerical simulations of UVC light propagation through seven different filtered face respirators (FFR) to determine their suitability for Ultraviolet germicidal inactivation (UVGI). UV propagation was modeled using the FullMonte program for two external light illuminations. The optical properties of the dominant three layers were determined using the inverse adding doubling method. The resulting fluence rate volume histograms and the lowest fluence rate recorded in the modeled volume, sometimes in the nW cm-2 , provide feedback on a respirator's suitability for UVGI and the required exposure time for a given light source. While UVGI can present an economical approach to extend an FFR's useable lifetime, it requires careful optimization of the illumination setup and selection of appropriate respirators.


Asunto(s)
COVID-19 , Equipo Reutilizado , Descontaminación , Desinfección , Humanos , Rayos Ultravioleta , Ventiladores Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA